
Early Experiences with the Myricom-X2000 Switch on an S M P Beowulf-Class
Cluster for Unstructured Adaptive Meshing

CHARLES D. NORTON AND THOMAS A. CWIK

Jet Propulsion Laboratory
California Institute of Technology
MS 168-522,4800 Oak Grove Drive

Pasadena, CA 91109-8099 USA

Contact Author: Charles.D.Norton@jpl.nasa.gov

Abstract

We explore the current capabilities of the recently re-
leased Myricom X2OOO witch, using MPICH over the GM
communication layer; for message passing on a 2-way SMP
Pentium III Beawulf-Class cluster: Performance measure-
ments on the network indicate that data transfer rates
of appmximatety 190 Mbyteds for ping-pong tests, and
24OMbyteds forfill-duplex exchange tests, can be achieved
for messages as large as 32 Mbytes. The perf onruutce varies
depending on how processors communicate; either within
an SMP node or across nodes. Results with the network for
parallel unstructured adaptive refinement of 3 0 tetrahedral
meshes show noticeable perfonnance improvement when
compared to lOOBaseT Ethernet. Furthemre, when com-
pared to traditional systems such as the SGI Origin 2000,
the combination of this fast network with high pet$ormunce
SMP processors demonstrate that Beowulf-Clusters com-
pare favombty with such system-even when communica-
tion intensive applications are used.

Keywords:
Performance Evaluation, Beowulf Cluster, AMR, Network,
Myrinet, SMP

1. Introduction

Beowulf-Class clusters have demonstrated that scalable
parallel computing can be achieved, at low cost, through the
use of commodity off-the-shelf (COTS) parts. The COTS
approach allows one to configure a system using the latest
hardware and software that is available, and affordable, at
the time. As time goes by, one has the option to reconfig-
ure a system as new products are announced and released.

Many cluster components may be freely available, such as
system software, while others, including advanced micro-
processors, are constantly under competitive pricing pres-
sures to remain affordable.

The network interconnect, however, allows great flexibil- t

ity regarding the communication performance one expects
verses the amount one is willing to pay. Although lOOBaseT
Ethernet cards are not expensive the -1 1 MByteds upper
bound can hinder the performance of clusters containing
m a y fast S M P processors with large amounts of main mem-
ory. (It is interesting to observe how improvements in sys-
tem software and microprocessor performance bring added
pressure to consider fast networking to maintain a balanced
system.)

Within the JPL High Performance Computing Group we
have a series of clusters, one of which is quite powerful.
This cluster contains 26 compute nodes, and one front end
node, of dual-processor 800 MHz Pentium m(sa total of
54 processors in all. Each node has 2 GBytes of RAM
available giving a system with 104 GBytes of main mem-
ory with 41.6 GFlopc; of computation. We recently replaced
our 3COM SuperStackU switch and lOOBaseT Ethernet net-
work with Myricom’s new 32-port X2000 networking hard-
ware. More details about Myricom’s technology including
architecture specifications, software, algorithms, and prod-
ucts are available at their web site and elsewhere [l, 61.

We will explore our experiences and evaluate the per-
formance impact this hardware introduces for our system.
The results will be compared to experiences before the new
network was introduced, and to a more traditional system
(the SGI Origin 2000) for adaptive meshing simulations that
typically stress CPU, memory, and communication perfor-
mance.

mailto:Charles.D.Norton@jpl.nasa.gov

Figure 1. Repartitioning and migration of artery mesh segment using PYRAMID AMR Library.

2. Characterizing Communication-Intensive
Applications

Many physics-based numerical applications are fun-
damentally irregular, meaning that the solution process
is largely determined at run-time and the communica-
tion requirements are non-uniform, although generally pre-
dictable. Parallel adaptive methods fall into this category
and software for these techniques require very high perfor-
mance systems for large problems.

We have developed software to handle parallel unstruc-
tured adaptive mesh refinement for finite element applica-
tions [S, 7. This tool allows large triangular and tetrahe-
dral meshes to be loaded, adaptively refined with automatic
mesh quality control, load balanced, and migrated among
the processors using high level object-based library com-
mands. Since parallel adaptive mesh refinement potentially
involves working with many millions of elements great ef-
fort is used to minimize communication and to ensure that
transmitted messages are as large as possible. On a clus-
ter, managing communication becomes even more impor-
tant since applications may use networks that are signifi-
cantly slower than those found on most traditional super-
computing systems.

Figure 1 shows a segment of a large tetrahedral artery
blood flow mesh segment. The original geometry was pro-
vided by Taylor et. al [8] and the initial mesh was generated
by the Scientific Computation Research Center at Rensse-

laer Polytechnic Institute [2]. The mesh contains 1.1 million
elements where our PYRAMID adaptive mesh refinement
library was used for repartitioning, load balancing, and mesh
migration. Processor partitioning is illustrated by color.

Figure 2. Performance for mesh repartitioning and
migration of the artery mesh.

Performance comparisons for this problem using
lOOBaseT Ethernet and Myrinet on the cluster, as well
as the NUMA architecture of the SGI 02K, indicate the
benefit of Myrinet, shown in figure 2. This is largely

a communication-based benchmark where a variety of
message sizes are used. As we will see, however, the
performance tradeoffs vary based on the problem solved.
Nevertheless, this initial benchmark indicates that the Be-
owulf cluster can compete on par with traditional systems
even for communication intensive applications.

3. Configuring MPICH-GM under Linux

Although cluster technology has generally stabilized,
when new components are integrated into an existing system
problems can develop. At this date, our Beowulf cluster is
based on Redhat Linux 6.2 with Kernel version 2.4.4 using
MPICH-GM version 1.2..7 with patches. Initially, however,
our hardware vendor installed kernel version 2.2.x which
did not support the features of our system. Also, Myri-
com's MPICH-GM version 1.2..5, based on MPICH 1.2.0,
had problems that were not immediately known. This in-
troduced delays, but fortunately Myricom support has been
very active in working with us to address and correct prob-
lems.

Regarding the initial kernel installation we found that
the vendor did not realize that certain configuration options
required by our system were not available. In fact, the
highmem region of memory was not addressable so we ex-
perienced unnecessary memory swapping that also inter-
fered with the memory requirements of the GM communica-
tion layer. Fortunately, most of the defaults for kernel ver-
sion 2.2.4 satisfied our system requirements so only a few
extra details required attention. This included specifying
that we had SMP processors, that the amount of real memory
was between 1-4MB, and that the highmem region of mem-
ory should be addressable.

There are a number of ways to configure MPICH-GM
for communication among MPI processes. If shared mem-
ory support is not specified then messages are sent over
the Myrinet. If the -shared-memory-support and
--disable-direct-copy options are used then SMP
communication with a 2-copy protocol is used. Alter-
natively, if only -shared-memory-support is used,
where direct-copy is enabled by default, then a 1-copy SMP
protocol is used. There were a number of problems re-
lated to these configuration options and they are sti l l be-
ing addressed. Nevertheless, using various patches from
Myricom, a good combination of stability and perfomwe
is achieved with shared memory support enabled and di-
rect copy disabled causing a 2-copy protocol to be in-
voked. Other configurations generate errors reported by
the -gm,sent () routine, or in user programs, on occa-
sion. For architectures that support memory registration
the -gm-can-register-memory option will allow a
registration/z.ero-copy mode. This option did not currently
give a performance improvement for our simulations and we

Figure 3. MBytesls transmitted in ping-pong tests
between two processors.

experienced less stability.
Figure 3 shows the results of a network ping-pong test

for the Myrinet installation compared to previous results for
lOOBaseT and the SGI Origin 2000. Incidentally, the MPI
implementation on the Origin uses the global shared mem-
ory to implement message passing. When a processor re-
quires data the packets are sent over the CrayLink so the
latency to access memory becomes a critical part of a per-
formance metric on this machine in addition to good cache
management.

The improvement for our cluster is significant where
neighbor processors that are not on the same board are used.
This certainly had an impact on the artery mesh migration
problem in figure 2. While we are very close to peak speed
for lOOBaseT for MPICH implemented over GM we are
only at about 54% of the peak speed of the GM communica-
tion layer alone (reported rated at 2.8Gbitsh). The average
latency is still quite low, about 181.1 sec. for processors that
share a CPU board and 37p sec. for processors across CPU
boards. You may notice a crossover point between the SGI
02K and Myrinet communication performance. The result
in figure 3 uses processors across CPU boards.

Others have reported that there can be an overhead asso-
ciated with MPICH over GM, and that on some systems the
MPI implementation can take away as much as 23% of the
peak bandwidth of Myrinet [3]. Nevertheless, other bench-
marks have indicated that 149 MBytes/s with lop latency
have been achieved with older versions of the Myrinet hard-
ware [6], so our new equipment does show a modest im-
provement over these results for MPICH over GM.

Figure 4. MBytes/s transmitted in ping-pong tests between two processors on the same board, and across boards, when
using both the ch-gm and chp4 devices under MPICH.

4. Evaluating Functionality and Performance

Our primary interest is to examine the effect of a network
upgrade for a communication intensive application. How-
ever, before examining how the X2000 hardware performs
on our adaptive meshing simulations we should take a closer
look at network performance in an S M P environment. Ad-
ditionally, since the GM layer is not completely stable at this
time, one may also want to allow Myrinet to emulate an IP
network where the c h p l device will run over TCP/IP as a
replacement. Understanding the performance implication of
this decision is also important for applications.

The c h q device results in figwe 4 show that good per-
formance is possible, particularly for large messages. There
is a cross-over point where communication between proces-
sors on the same CPU board falls behind processor commu-
nication across boards for messages larger than 16 KJ3ytes.
We have no speculation as to why this cross over occurs at
this point. We do know that for our adaptive meshing prob-
lem we regularly send messages as large as 35 MJ3ytes in
size so our simulations will select processors one at a time,
one board at a time.

Regarding the c h p l device, commonly associated with
the IP protocol, there are steps one can take to actually send
IP traffic over Myrinet and that is what we have done. This
is generally a matter of building MPI with the chp4 device
and ensuring that the Myrinet configuration files and system
host tables are set up properly. This gives an improvement
over the Ethernet cables and the performance is essentially
independent of the processor configuration chosen. This ar-
rangement allows one to use the cluster reliably, but not up
to its full potential.

Figure 5. Muzzle-brake shock tube mesh with initial
mesh partitioning and redistribution among eight pro-
cessors.

4.1 Analyzing the Muzzle-Brake

Figure 5 shows a muzzle-brake shock tube mesh with
its initial partitioning and redistribution among processors.
We repeated the simulations from [7 J using the new Myrinet
X2000 and have included the combined results in figure 6.
The initial mesh contains just 34,214 elements, but after
three adaptive refinements the new mesh, shown in figure 7,
contains 1,264,443 elements.

What is clear is that for a small number of processors the

Figure 6. Performance after three adaptive refine-
ments of the muzzle-brake mesh.

Beowulf cluster performs much better than the Origin for
this problem. As the number of processors is increased all
configurations show some scalability, but the Origin outper-
forms the cluster. One would suspect that a fast Myrinet
network would show an even greater improvement over the
100BaseT Ethernet. This is misleading, however, because
for this specific mesh the communication performance is not
dominant.

A breakdown of the time spent in mesh migration, which
includes partitioning and load balancing, compared to creat-
ing new elements by adaptive refinement shows that much
more time is spent in the AMR process. On the Beowulf
cluster using Myrinet - 182s and 4 6 s are spent in creating
new elements and migrating them respectively. Similarly,
-98s and -22s are respectively spent in these stages on the
Origin. In fact, once the coarse elements have been redis-
tributed the new elements are created locally so no commu-
nication is required. This implies that improvements in the
network will not significantly impact overall performance
for this specific problem.

4.2 Analyzing an Earthquake Mesh

Figure 8 shows the performance for an earthquake mesh
generation where communication is more dominant. These
results show a nearly 50% performance improvement for
the cluster under Myrinet. The initial mesh only contains
1,316 elements where 554,141 elements are created after
three refinements. This example shows how a change in
the problem description can impact performance for appli-
cations that have irregular characteristics.

Another important point, however, regards improve-
ments in algorithm design for communication on clusters.

Flgure 7. Performance after three adaptive refine-
ments of the shaft section of the muzzle-brake mesh.

This is also shown in figure 8 where the migration time is
measured for 8 processors based on old and new communi-
cation algorithm techniques. The original algorithms set up
communication schedules based on processors sending and
receiving messages directly as needed. That approach as-
sumed that good performance can be achieved by matching
communication operations exactly. Since the communica-
tion schedule is irregular processors managed non-uniform
message passing activities, but the volume of data trans-
ferred was limited to only what was required among proces-
sors that communicate.

The new communication algorithm is much more scal-
able for large systems in that a tree-based pair-wise ex-
change algorithm is used. This algorithm works on any
number of processors, not just a power of two. It is unique in
that is guarantees that a minimal number of exchanges will
be performed-meaning that the algorithm can determine if
a processor has already received the data it needs and skip
communication operations as necessary. The volume of data
tends to grow with such algorithms as exchanges are per-
formed, but this algorithm can also determine when data
need not be included in future pairwise exchanges and it will
remove such data from future operations. It is designed to
take advantage of networks supporting full-duplex commu-
nication.

Although for tightly-coupled networks this algorithm
will work well, it is very well structured for clusters that
have slower networks, as seen in figure 8 for the lOOBaseT
Beowulf network. When Myrinet is applied the results

Flgure 8. Performance after three adaptive refinements of an earthquake mesh among 32 processors where Myrinet
network upgrade affects overall performance. Also shown is the migration stand-alone timing due to message passing
algorithm improvements for 8 processors.

are even more dramatic. All of the performance results in
this paper are based on using the new communication algo-
rithms.

Flgum 9. Adaptive refinement, repartitioning, and
migration of the artery mesh segment containing 1.8
million elements.

4.3 Analyzing an Artery Mesh

Returning to our artery mesh figure 9 shows the adap-
tive refinement of a small section that creates 1.8 million el-
ements from the initial mesh of 1.1 million elements. Fig-
ure 10 shows again how performance can vary between the
Myrinet-basedBeowulf cluster and the SGI Origin 2000. In
this example we used 50 processors since the GM messag-
ing layer would occasionally fail in message send operations
when all 52 processors were used.

The first instance in figure 10 adaptively refined a small
region and analysis showed that the time spent in migration
and adaptive refinement were nearly equal across both ma-
chines. In the second instance the region refined was in-
creased, creating about 4.5 million elements. For the cluster
both the migration and adaptive refinement time increased
significantly, but more time was spent in adaptive refinement
than migration. This pattern was also true for the SGI Ori-
gin, but both migration and refinement were faster than on
the cluster.

In the third instance the entire artery was refined creat-
ing 7.4 million elements. In this case, where one would ex-
pect the cluster to perform poorly, it actually outperformed
the SGI Origin. Analysis showed that the migration time for
the cluster was slower than for the Origin while the adaptive
meshing time was faster for the cluster than for the Origin.
Overall, this gave the cluster better performance in this case.

We also examined the message passing structure more
closely for these problem instances. Although the new pair-
wise message exchange algorithm was used for mesh mi-

Figure 10. Performance comparison for adaptive re-
finement of artery mesh for various region sizes on 50
processors.

gration we decided to analyze the mapping for processor
communication exactly. This included measuring, for each
processor, the number of other processors that need to send
data as well as the number of elements each processor must
receive in order to achieve load balance during migration.
Neither of these measurements allowed specific conclusions
to be drawn about the performance differences among these
problems cases. In fact, the data interaction was fairly
well balanced for all problem sizes under both architectures.
There were instances, however, where the number of ele-
ments a small number of processors must receive for load
balance was about 5 times larger than the average, but this
was characteristic of all test cases.

This would suggest that characteristics of the problem
may determine performance much more than features of the
network, and that for irregular problems this is difficult to
characterize.

Although it is risky to speculate for irregular problems,
we are aware that the balance between CPU speed and
the time to fetch data from memory does play a role in
performance. The pipelined super-scalar architecture of
the R12000 processors on the Origin are only clocked at
300 Mhz, but the processor to memory communication in-
teraction is very well balanced leading to good single-node
performance. The Pentiumarchitecture, historically, has not
been balanced as well potentially causing memory accesses
to fall behind high CPU clock rates. This has been seen in
calculations involving highly structured matrix operations
where the ability to control how data is accessed can be con-
trolled. Although adaptive meshing is very irregular by na-

ture, the possibility exists that for certain problems the CPU
to memory interaction dominates performance more than
the network on a cluster.

5. Conclusion

As one would expect, the upgrade of a network mainly
benefits problems with large message passing requirements.
On point-to-point ping-pong tests using Myricom's MPICH
under the GM messaging layer we can achieve about
190 MBytesh, or about 1.5 GBitds, for sufficiently large
messages. On an SMP where shared-memory communica-
tion is possible, we also observed a crossover where com-
munication on the dual-CPU board falls behind communica-
tion across boards for large messages. Ultimately the ability
to sustain network performance for large messages is more
important for users running large applications.

Another useful performance measurement is the perfor-
mance of the network where multiple pairs of processors are
exchanging messages simultaneously. This indicates net-
work performance under a load. Figure 11 shows rather dra-
matic results of this test for 16 processors using Myrinet
and MPICH-GM. The error bars also show the minimum
and maximum range of data transfers values we experienced
during this test. For large messages, the average transmis-
sion rates clearly fall toward the low side.

Our new migration algorithms perform such pair-wise
exchanges and we can see that under a load the performance
drops significantly. We have also included results from
the ping-pong test when multiple processors are perform-
ing the test simultaneously. This shows that for one-way
(half-duplex) message transfers occurring simultaneously
that performance drops to about 100 MBytes/s for average
size messages and falling sharply for large messages. More
importantly, for full-duplex message transfers between pro-
cessors where we would expect good performance, we may
only see about 30 MBytes/s on average. This most likely
is a contributing factor to the performance of our adaptive
meshing application and may also explain why improve-
ments over our Ethernet connection are limited. In these
tests processor pairs communicate across boards, not within
the same board.

When the pair-wise exchange test is performed again,
where dual-processors communicate within the same board,
the results improve. For the ping-pong tests an average of
125 MBytes/s is achieved. The fullduplex exchange test
shows an average of 120 MBytes/s.

One caveat regarding performance comparisons between
the Beowulf SMP Cluster and the SGI Origin 2000 for our
adaptive mesh problem is that the simulation results are not
precisely identical. In particular, the ParMetis partitioner
applied in the dynamic load balancing stage, produces dif-
ferent partitionings on each machine [4]. (This is a side-

Figure 1 1. Performance comparison for network swap test where processor pairs exchange data simultaneously.

effect of the random number generation process.) This will
affect the adaptive refinement process and may affect com-
parative timings, but this should be not too significant.

We have also noticed that performance varies among
these machines as simulations are repeated. As the SGI Ori-
gin is a shared resource this effect is expected. The Beowulf
runs were performed in isolation, but timings also varied un-
der Myrinet and MPICH-GM. In some cases, on both sys-
tems, the variance was significant. We always used the best
performance numbers in our reported results.

Actually getting to the point where programs could run
fairly reliably using the X2000 switch, MPICH-GM, and
RedHat Linux was not a small effort. As early users we can
run applications on our system, but some instability still ex-
ists. We have seen improvements resulting from access to
software fixes and patches from Myricom support. As this
continues we suspect that we should see increased reliabil-
ity.

In the end, the network is just one contributor to the com-
bination of factors that affect performance and usability of
the cluster. Our experience is that for functionality tests
good performance can be achieved using X2OOO but the ef-
fective performance improvement depends largely on char-
acteristics of the application.

6. Acknowledgment

We appreciate several helpful discussions with Edith
Huang and Gary Gutt of the JPL Supercomputing Group,
members of of the High Performance Computing Group, as
well as the Myricom Technical Support team. This work
was performed at the Jet Propulsion Laboratory, California

Institute of Technology under a contract with the National
Aeronautics and Space Administration.

References

[13 N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. Su. Myrinet - A
Gigabit-per-Second Local-Area Network. ZEEE Micro,
15(1):29-36, February 1995.

[2] Joseph E. maherty and James D. Teresco. Software
for Parallel Adaptive Computation. In Michel Deville
and Robert Owens, editors, P m . 16th ZMACS World
Congress on Scientific Computation, Applied Mathe-
matics and Simulation, Lausanne, 2000. IMACS. Paper
174-6.

[3] J. Hsieh, T. Leng, V. Mashayekhi, and R. Rooholamini.
Architectural and Performance Evaluation of GigaNet
and Myrinet Interconnects on Clusters of Small-scale
SMP Servers. In P m . SC '200, Dallas, Texas, Novem-
ber 04-10 2000. IEeE Computer Society. CD-ROM.

[4] G. Karypis, K. Schloegel, and V. Kumar. ParMetis: Par-
allel Graph Partitioning and Sparse Matrix Ordering Li-
brary. Technical report, Dept. of Computer Science, U.
Minnesota, 1997.

[5] J. 2. Lou, C. D. Norton, and T. Cwik. A Robust Parallel
Adaptive Mesh Refinement Software Package for Un-
structured Meshes. In P m . Fifth Zntl. Symp. on Solving
.Zrregularty Structured Prvblems in Parallel, 1998.

[6] Myricom, Inc. Myricom Creators of Myrinet, 2001.
http://www.myri.com.

http://www.myri.com

[7] C. D. Norton, J. 2. Lou, and T. A. Cwik. Status and Di-
rections for the PYRAMID Parallel Unstructured AMR
Library. In 15th International Parallel and Distributed
Pmessing Symposium, San Francisco, CA, April 23-27
2001. Irregular 2001 Workshop. CD-ROM.

[8] Charles A. Taylor, Thomas J. R. Hugues, and Christo-
pher K. zajfns. Finite Element Modeling of Blood Flow
in Arteries. To appear, Comp. Meth. in Appl. Mech. and
Engng., 1999.

